เป็นที่รู้กันว่าสัตว์ขาข้อทั้งหลาย รวมทั้งสัตว์น้ำ จำพวก กุ้ง กั้ง แมงดาทะเล มีเลือดเป็นสีน้ำเงิน ซึ่งเป็นสี ที่เกิดจากเลือดของสัตว์จำพวกนี้ มี copper เป็นส่วนประกอบของโปรตีนที่ใช้เป็นตัวนำออกซิเจน ต่างจากเลือดสีแดงของสัตว์เลี้ยงลูกด้วยนม และสัตว์ปีกที่มี Iron เป็นส่วนประกอบของโปรตีนที่ใช้เป็นตัวนำออกซิเจน นักวิทยาศาสตร์ค้นพบว่าเลือดสีน้ำเงินของสัตว์เหล่านี้ สร้างโปรตีนที่ทำหน้าที่เป็นภูมิคุ้มกันที่จะทำให้เลือดแข็งตัวทันทีที่มีจุลินทรีย์แปลกปลอมแม้เพียงเล็กน้อยโดยเฉพาะจุลินทรีย์ชนิด E.coli และ Salmonella การทดสอบโดยใช้เลือดสีน้ำเงินของสัตว์เหล่านี้มีความไวสูงมากสามารถตรวจพบจุลินทรีย์ได้ถึงปริมาณ 1 ในล้าน-ล้าน ส่วน (1/trillion) เปรียบเทียบได้กับการตรวจหาเมล็ดข้าวสาร 1 เมล็ดในทะเลสาบขนาดใหญ่

ปัจจุบันอุตสาหกรรมด้านการแพทย์ได้นำเลือดสีน้ำเงินจากแมงดาทะเล (Horseshoe Crab) มาใช้ประโยชน์อย่างกว้างขวางโดยเฉพาะนำมาใช้ตรวจคัดกรองผลิตภัณฑ์ที่ต้องการความปลอดภัยสูงต่างๆ เช่นการผลิตวัคซีน การผลิตของเหลวเพื่อการฉีดเข้าเส้นเลือด และการผลิต ผลิตภัณฑ์การแพทย์อื่นๆ นับว่าเลือดสีน้ำเงินนี้มีคุณประโยชน์อย่างยิ่งต่อมนุษย์ชาติ

Clinical Trials การทดสอบประสิทธิภาพของยาใหม่ทางคลินิก

clinicaltr

แต่ละปีบริษัทยาทั่วโลกจะสังเคราะห์สารประกอบต่างๆนับเป็นหมื่นชนิดเพื่อนำมาผลิตเป็นยารักษาโรคต่างๆ ในจำนวนนั้นมีสารเพียงไม่กี่ชนิดเท่านั้นที่ผ่านการทดสอบทุกขั้นตอนจนสามารถนำออกมาใช้เป็นยารักษาโรค และนำออกขายในตลาดยาได้ ซึ่งอาจจะต้องใช้เวลายาวนานถึง 20ปี ขั้นตอนต่างๆที่ยาทุกชนิดจะต้องผ่านแบ่งเป็นช่วงๆ (phase) 4 ช่วงการทดสอบคือ

  • Phase 1        การใช้ยากับคนครั้งแรก เพื่อให้ผู้วิจัยได้รู้ว่ายาปลอดภัยหรือไม่ ขนาดของยาสูงสุดเท่าใดที่เหมาะสมในการใช้โดยมีผลข้างเคียวน้อยที่สุด การทดสอบนี้ใช้กับอาสาสมัครที่สุขภาพดี กลุ่มเล็กๆ (5-10 คน) ภายใต้การควบคุมที่เข้มงวด
  • Phase 2        เป็นการทดสอบกับผู้ป่วยที่ป่วยด้วยโรคที่จะใช้ยาที่ทดสอบรักษาโดยใช้อาสาสมัครกลุ่มที่ใหญ่ขึ้นอาจถึง 2-3 ร้อยคน
  • Phase 3        ถ้าพบว่ายาได้ผลในการรักษา และมีผลข้างเคียงที่รับได้ จึงก้าวสู่การทดลองกับอาสาสมัครกลุ่มใหญ่ขึ้นอาจเป็น 2-3 พันคน โดยแบ่งอาสาสมัครผู้ป่วยเป็นกลุ่มได้รับยาจริง และกลุ่มได้รับยาหลอก เรียกการทดสอบระยะนี้ว่า “randomized controlled trial” โดยนำผลการทดสอบเปรียบเทียบ กับอาสาสมัครทั้ง 2 กลุ่ม โดยที่ทั้งอาสาสมัครและแพทย์ไม่รู้ว่าใครได้รับยาจริง และใครได้รับยาหลอก เมื่อผู้พิสูจน์ให้เห็นว่ายาใช้การได้ และไม่มีผลข้างเคียงกับผู้ป่วยที่อาจเกิดอันตราย ก่อนที่รัฐบาลจะอนุญาตให้แพทย์ใช้ยากับผู้ป่วยทั่วไปได้ กว่าจะถึงขั้นนี้ต้องใช้เวลา 7-15 ปี ในจำนวนสารกว่า 10,000 ชนิดที่พัฒนาขึ้นถูกนำมาทดสอบมีเพียงประมาณ 5 ชนิดที่ผ่านขั้นนี้ไปได้และเพียง 1 ชนิด เท่านั้นที่ออกสู่ตลาดยาได้สำเร็จ ดังนั้นบริษัทยาจึงต้องใช้เงินเป็นหมื่นๆล้านบาทในการทดสอบยาแต่ละชนิด
  • Phase 4        เป็นการเก็บข้อมูลความปลอดภัยของยาต่อไปที่มาจากประชาชนที่ใช้ยาทั่วไป ข้อมูลชั้นนี้อาจต้องเก็บจากจำนวนผู้ใช้ยา 5,000 – 10,000 คน เพื่อหาข้อมูลที่อาจเกิดขึ้นใน 1 ต่อ 10,000 ราย ที่ไม่พบในการทดสอบช่วง 1-3

                มีคำถามว่าอาสาสมัครมีความเสี่ยงมากน้อยเพียงใด จากข้อมูลการทดสอบยาชนิดหนึ่งเมื่อ 5-6ปี ที่แล้วช่วงการทดสอบใน phase 1 อาสาสมัคร 6 คน มีอาการทรุดอย่างรวดเร็วจากผลข้างเคียงของยาแม้ใช้ขนาดเพียง 1/500 ของยาที่ใช้ในสัตว์ทดลอง แต่ทั้ง 6 คน ฟื้นขึ้นได้หลังต้องอยู่ในโรงพยาบาลหลายเดือน และเมื่อประมาณ 20 ปี ที่แล้วในช่วง phase 2 ของการทดลองยาต้านไวรัสตับอักเสบชนิดบี มีอาสาสมัครเสียชีวิต 5 คน และ 2 คน ต้องมีการเปลี่ยนตับ

                แม้ว่าอาสาสมัครจะมีความเสี่ยงต่อชีวิตอยู่บ้าง แต่ยังมีคนจำนวนมากรับอาสาเป็นอาสาสมัครส่วนใหญ่มีจิตใจที่เห็นประโยชน์ต่อส่วนรวม ปัจจุบันมีกฎเข้มงวดมากที่ผู้ทดสอบจะต้องแจ้งข้อมูลอย่างละเอียดให้อาสาสมัครได้รับทราบ และอาสาสมัครจะถอนตัวได้ตลอดเวลาถ้ามีความรู้สึกไม่ปลอดภัย

D-Dimers Assay

                ขบวนการแข็งตัวของเลือด มีความสำคัญในการที่จะหยุดยั้งการไหลของเลือด เมื่อมีการบาดเจ็บของอวัยวะต่างๆของร่างกายเกิดขึ้น

ขณะเดียวกันการแข็งตัวของเลือดก็อาจก่อให้เกิดอันตรายร้ายแรงถึงแก่ชีวิตได้ กรณีที่การแข็งตัวของเม็ดเกิดขึ้นในเส้นเลือด เนื่องจากก้อนของเม็ดเลือด

ที่แข็งตัวถูกกระแสการไหลของเลือดนำไปสู่เส้นเลือดต่างๆได้ทั่วร่างกาย  เข้าไปอุดตันเส้นเลือดขนาดเล็ก  เข้าขัดขวางการไหลของเลือดที่หล่อเลี้ยงอวัยวะ

ที่สำคัญ เช่น สมอง และ หัวใจ ทำให้ผู้ป่วยมีอาการอัมพาตหรือหัวใจวายเฉียบพลัน หรือบางกรณีก้อนเม็ดเลือดที่แข็งตัวเกิดขึ้นในบริเวณเส้นเลือดดำใหญ่

ตามแขน ขา ก้อนเม็ดเลือดที่แข็งตัวถูกกระแสเลือดพัดพามาอุดตันเส้นเลือดในปอดส่งผลกระทบต่อระบบการหายใจ

                D-Dimers เกิดขึ้นจากขบวนการแข็งตัวของเลือด ขณะมีการสลายตัวของ fibrinogen และ fibrin ซึ่งปริมาณของ D-Dimers ในกระแสเลือดสามารถ

ตรวจวิเคราะห์ได้หลายวิธี อาทิเช่น ELISA, Immunofluorescence Chemiluminescence  และ  Latex enhanced immunoturbidimetric immunoassay

เป็นต้น แต่ละวิธีก็มีความไว (sensitivity)  และ  ความแม่นยำ  (specificity)  ใกล้เคียงกัน

                D- Dimers เป็นตัวบ่งชี้ทางชีวภาพ (biomaskers) ที่สำคัญในการวินิจฉัยโรคหลายอย่าง อาทิเช่น การอุดตันของเส้นเลือดดำ 

( deep venous thrombosis  หรือ  DVT ) การอุดตันของเส้นเลือดในปอด  (pulmonary embolism  หรือ  PE ) นอกจากนั้นปริมาณของ

D- Dimers  ในเลือดจะสูงขึ้นในกรณีอื่นๆได้ด้วย  เช่น  coronary artery disease , cancer, trauma , pregnancy , infection , renal disease ,

recent surgical procedures , advanced age etc.  อย่างไรก็ตามปริมาณ  D- Dimers ที่ตรวจพบในกระแสโลหิตจะมีความจำเพาะ  ( specificity ) 

กับโรค  DVT  และ PE  มากกว่าโรคอื่นๆ  

            CRISPR มีความหมายถึง “clustered regularly interspaced palindromic repeats” โดยทั่วไป CRISPR technology จะประกอบไปด้วย เอนไซม์ชนิดหนึ่งได้แก่ CAS9 ซึ่งเป็นเอนไซม์ที่ทำหน้าที่แทนมีดผ่าตัดเข้าไปตัด DNA โดยใช้RNA เป็นตัวทำหน้าที่นำเอนไซม์ไปตัด DNA ตรงจุดที่ต้องการให้ตัด เพื่อให้ได้ โมเลกุลของ DNA ที่ต้องการ

 

                การนำทางของ RNA มีความแม่นยำสูงมากทำให้นักวิทยาศาสตร์สามารถใส่ส่วนของ DNA ที่สร้างขึ้นเข้าไป แทนที่ DNA ที่ถูกตัดออกไปได้อย่างถูกต้องพร้อมๆกับเอนไซม์ CAS9 จะทำหน้าที่กำจัด DNA ที่ถูกตัดออกไป เทคโนโลยีนี้นับเป็นครั้งแรกที่นักวิทยาศาสตร์ สามารถทำการเปลี่ยนแปลง ขจัดออก หรือจัดระเบียบใหม่ของโมเลกุลของ DNA ของสิ่งมีชีวิตทุกชนิดได้อย่างรวดเร็วทำให้เป็นความหวังของการนำมาใช้ในการควบคุม หรือรักษาโรคได้หลายอย่างอาทิเช่น การควบคุมประชากรยุง ซึ่งเป็นพาหะของโรคหลายโรค อาทิเช่น ยุง Genus Anopheles นำเชื้อมาลาเรีย ยุง  GenusAedes นำเชื้อโรคหลายอย่างเช่นโรค yellow fever,โรค dengue fever,โรค chikungunya , โรค west nile virus และโรค Zika ซึ่งสามารถทำได้โดยการเปลี่ยนยีนของยุงเพื่อให้เสียความสามารถในการแพร่กระจายโรค เช่น การเปลี่ยนแปลงของยุงพ่อแม่ ให้ออกลูกที่เป็นหมัน เป็นต้น นอกจากนั้นยังได้มีความพยายามศึกษาที่จะใช้เทคโนโลยีนี้กำจัด HIV จาก DNA ของมนุษย์การวิจัยในการที่จะนำ CRISPR เทคนิคมาใช้ในทางการแพทย์มีความก้าวหน้าไปอย่างรวดเร็ว อาทิเช่น การวิจัยเพื่อค้นคว้าหายาที่มีประสิทธิภาพจำเพาะในการหยุดยั้งการเพิ่มจำนวนของเซลล์มะเร็งแต่ละชนิด การวิจัยเพื่อเปลี่ยนแปลงยีนในเซลล์ต้นกำเนิด (stem cells) ของผู้ป่วยโรคเลือดออกไม่หยุด (hemofilia) ให้กลับมาเป็นเซลล์ปกติ หรือการวิจัยเพื่อหาวิธีการกำจัดไวรัส PERVs (porcine endogenous retrovirus) ซึ่งเป็นไวรัสที่มีอยู่ใน DNA ของหมูโดยทั้วไป เพื่อที่จะสามารถนำอวัยวะของหมูมาปลูกถ่ายให้แก่คนได้เป็นต้น รวมทั้งการสร้างสายพันธ์ของพืชที่มียีนที่สามารถต่อต้านศัตรูพืช หรือยีนที่ทำให้พืชไม่เป็นที่สนใจของแมลง เป็นต้น หรือการสอดใส่ยีนเข้าไปใน DNA ของพืชเพื่อให้สามารถสร้างสารที่ต้องการได้จำนวนมากขึ้น เทคโนโลยีนี้เรียกรวมๆว่าวิศวกรรมพันธุศาสตร genetics engineering

 

            สิ่งมีชีวิตที่ได้รับการเปลี่ยนแปลงทางพันธุกรรม หรือ genetically modified organisms (GMOs) นี้แม้จะมีประโยชน์มากแต่ก็มีความเสี่ยงที่จะเกิดผลกระทบในทางเสียหายด้วยเช่นกัน เนื่องจากสิ่งมีชีวิตที่ได้ถูกเปลี่ยนแปลงพันธุกรรมไปแล้ว การเปลี่ยนแปลงให้กลับสู่สภาวะเดิมทำได้ยาก สัตว์หรือพืช GMOs ที่ถูกสร้างขึ้นแล้วเมื่อมีการแพร่กระจายออกไปอาจส่งผลกระทบต่อสุขภาพอนามัยและภาวะแวดล้อมซึ่งเป็นสิ่งที่เรายังไม่รู้แน่ชัดจึงจำเป็นต้องมีการศึกษาผลกระทบที่อาจเกิดขึ้นต่อไป

 

          กลุ่มอาการโรคดาวน์ เป็นโรคทางพันธุกรรมที่ผู้ป่วยมีอาการผิดปกติทางระบบประสาท และทางร่างกายทั้งภายนอกและภายใน อาทิเช่น เด็กเจริญเติบโตผิดรูปร่าง ตัวสั้น หัวสั้นกลม แขน ขา นิ้วมือนิ้วเท้าสั้น ลิ้นหนา เป็นต้น อาการของโรคดาวน์ จะมีความรุนแรงแตกต่างกันไปแต่โดยทั่วไปเด็กจะมีไอคิวเฉลี่ยไม่เกิน 50

          สาเหตุของโรคดาวน์เกิดจากความผิดปกติของโครโมโซมโดยที่คนทั่วไปจะมี 46 โครโมโซม (23คู่) แต่เด็กที่เป็นโรคดาวน์จะมี โครโมโซมที่ 47 เป็นส่วนเกินติดอยู่กับโครโมโซมคู่ที่ 21 ซึ่งเรียกว่า (trisomy 21)

       

การเกิดโรคดาวน์ในเด็กมีความสัมพันธ์กับอายุการตั้งครรภ์ของแม่ กล่าวคือ

-  สตรีที่ตั้งครรภ์ขณะอายุ 20 ปี จะมีความเสี่ยงการเกิดโรคดาวน์ของลูกเท่ากับ 1:2000

-  สตรีที่ตั้งครรภ์ขณะอายุ 35 ปี จะมีความเสี่ยงการเกิดโรคดาวน์ของลูกเท่ากับ 1:300

-  สตรีที่ตั้งครรภ์ขณะอายุ 40 ปี จะมีความเสี่ยงการเกิดโรคดาวน์ของลูกเท่ากับ 1:100

-  สตรีที่ตั้งครรภ์ขณะอายุ 45 ปี จะมีความเสี่ยงการเกิดโรคดาวน์ของลูกเท่ากับ 1:40

ขณะที่อายุของพ่อต่อการเกิดโรคดาวน์ในลูกไม่มีความสัมพันธ์กันมากนัก

 

การวินิจฉัยโรคดาวน์สำหรับเด็กในครรภ์สามารถทำได้เหมาะสมที่สุดขณะอายุตั้งครรภ์

อยู่ในช่วง 14 -18 สัปดาห์ ซึ่งปัจจุบันมี วิธีตรวจวินิจฉัย 2 วิธี คือ

1. โดยการตรวจเลือดของมารดา เรียกว่า triple serum screening ซึ่งจัดเป็นการตรวจคัดกรองเบื้องต้น กรณีที่ผลการตรวจเป็นบวก เด็กในครรภ์มีความเสี่ยงที่จะเป็นโรคดาวน์ ได้ 1 ใน 200 ราย แต่ถ้าผลออกมาเป็นลบก็เชื่อได้ว่าเด็กในครรภ์จะไม่เป็นโรคดาวน์

2. การตรวจน้ำคร่ำ (amniotic fluid chromosome study) กรณีที่ผลการตรวจคัดกรองเป็นบวกก็สามารถตรวจยืนยันต่อได้ โดยการเจาะน้ำคร่ำจากครรภ์มาตรวจหาโครโมโซมที่ผิดปกติ (trisomy 21) โดยตรง ซึ่งถ้าตรวจไม่พบก็ยืนยันได้แน่นอนว่าเด็กจะไม่เป็นโรคดาวน์

           กรุงเทพ พยาธิ-แลป มีห้องปฏิบัติการที่สามารถตรวจได้ทั้ง 2 วิธี ซึ่งเป็นห้องปฏิบัติการที่มีมาตรฐานสูงระดับสากล ได้รับการรับรองด้านคุณภาพห้องปฏิบัติการทางการแพทย์ (ISO 15189:2007) จากกรมวิทยาศาสตร์การแพทย์ กระทรวงสาธารณสุข และการประกันคุณภาพโดย College of American Pathologists (CAP) 

           การตรวจวิธีที่ 1 (triple serum screening) แม่ที่ตั้งครรภ์ช่วงสัปดาห์ที่ 16 ถึงสัปดาห์ที่ 18 สามารถมาเจาะเลือดตรวจได้ด้วยตนเองที่ห้องปฏิบัติการของ กรุงเทพ พยาธิ-แลป ผลการตรวจจะทราบได้ในเวลา 3  วัน

           การตรวจวิธีที่ 2 (amniotic fluid chromosome study) แพทย์จะเป็นผู้เจาะดูดน้ำคร่ำในครรภ์ แล้วส่งมาตรวจที่ห้องปฏิบัติการของกรุงเทพ พยาธิ-แลป ใช้ระยะเวลาการตรวจ ประมาณ 3 สัปดาห์

หมวดหมู่รอง

บทความวิชาการ